The thermal behavior of the carbohydrazide complexes of certain metals(VI)

Gases evolved in the system of the Mg complex with various oxidizing agents

by Miyako AKIYOSHI*, Yasuyuki IMANISHI*, Norimasa HIRATA** Hidetsugu NAKAMURA* and Yasutake HARA*

Carbohydrazide (hereafter, CDH) metal complexes are expected to be a new gas generant for automobile air bags. In the previous report, the combustion reaction of the Mg complex with various oxidizing agents was investigated by thermal analysis and the measurement of the heat of combustion, the burning temperature and the burning rate.

In this report, the gas evolution behavior was investigated in the system of the Mg complex/oxidizing agent mixture. The oxidizing agents used were potassium perchlorate (KClO₄), potassium bromate (KBrO₃), potassium nitrate (KNO₃) and strontium nitrate (Sr(NO₃)₂). Furthermore, 10% CuO was added as an another oxidizing agent in all binary systems.

For the Mg complex / KBrO₃ mixture system, the initial temperature of the reaction was the lowest with the most vigorous reaction and the evolved amount of nitrogen and carbon dioxide gases was the largest of all systems. When using $Sr(NO_3)_2$ as the oxidizing agent, the amount of the N₂ gas evolved was the lowest and was increased with the addition of CuO. NH₃ and N₂H₄ gases were generated in all binary systems with the oxidizing agent, and the amount of these gases decreased remarkably with the addition of CuO.

1. Introduction

As a non-azide gas generant in an airbag system for safer driving, tetrazole derivatives¹⁾, urazole²⁾ and azodicarboamide³⁾ were the sub-

Received on June 26, 1998
*Department of Applied Chemistry, Faculty
of Engineering, Kyushu Institute of Technol-
ogy
Sensui-machi Tohata-ku Kitakvusvu-shi 804-

Sensui-machi, Tobata-ku, Kitakyusyu-shi 804– 8550, JAPAN

- TEL 093-884-3308
- FAX 093-884-3308
- **Harima Plant, Daicel Chemical Industries, Ltd.

805 Umaba, Ibogawa-cho, Ibo-gun, Hyogo Prefecture 671–1665, JAPAN TEL 0791–72–5422

FAX 0791-72-5450

jects of this study. The authors evaluated carbohydrazide (hereafter, CDH), which is composed of four nitrogen atoms, a carbon atom and an oxygen atom; various CDH metal complexes were synthesized and their thermal decomposition behaviors were investigated in previous reports^{4~8)}.

In a fourth report⁷⁾, the combustion reaction for the Mg complex nitrate of CDH (Mg(CDH)₃(NO₃)₂) with various oxidizing agents was investigated by thermal analysis and the measurement of the heat of the combustion, the burning temperature and the burning rate. The oxidizing agents were potassium perchlorate (KClO₄), potassium bromate (KBrO₃), potassium nitrate (KNO₃) and

Table 1 Compositions of mixtures

No	mixtures	mol/mol	wt./wt.
1	MgCDH*/CuO	12.5/87.5	42.9/57.1
2	MgCDH/KClO₄/CuO	29.3/44.9/25.8	59.7/30.3/10.0
3	MgCDH/KBrO ₃ /CuO	24.8/49.2/25.0	50.1/39.8/10.0
4	MgCDH/Sr(NO ₃) ₂ /CuO	31.7/38.4/29.9	55.8/34.2/10.0

 $MgCDH = Mg(CDH)_3(NO_3)_2$

 Table 2 Conditions for gas chromatograph

Gases	N ₂ , CO	N ₂ O, CO ₂	
Column	Molecular sieve 5A	Activated charcoal	
Particle size	60~80 mesh	60~80 mesh	
Length	2 m	lm	
Temp.	40°C	40°C	
Carrier gas	He, 20 ml/min.	He, 60 ml/min.	

strontium nitrate $(Sr(NO_3)_2)$. Furthermore, for the Mg complex only, the gases evolved during the decomposition were already analyzed quantitatively in a previous report⁶⁾.

In this report, the gas evolution behavior in the mixture system of the Mg complex of CDH with the above-mentioned oxidizing agents was investigated, in which CuO was added as a part of the oxidizing agent in a weight ratio of 10% for all components.

- 2. Experiment
- 2.1 Reagents

The Mg complex of CDH was synthesized by a previously reported method⁴⁾. The oxidizing agents were Wako Pure Chemical reagent grade. Reagents screened to under 63 μ m were mixed for sixty minutes by the splittable chopsticks on parchment paper.

The mixture composition was a stoichiometric one based on the following eq. $1\sim4$ in addition to eq.1, 2 and 4 in the fourth report⁷⁾. Table 1 shows the mixture composition except for the compositions mentioned in the fourth report⁷⁾.

$$\begin{array}{ll} Mg(CDH)_{3}(NO_{3})_{2}+7CuO\\ \rightarrow MgO+7N_{2}+3CO_{2}+7Cu+9H_{2}O & (1)\\ Mg(CDH)_{3}(NO_{3})_{2}+1.529KCIO_{4}+0.881CuO\\ \rightarrow MgO+1.529KCl+0.881CuO+7N_{2}\\ +3CO_{2}+9H_{2}O & (2) \end{array}$$

$$\begin{split} & Mg(CDH)_{3}(NO_{3})_{2} + 1.984 KBrO_{3} + 1.048 CuO \\ & \rightarrow MgO + 1.984 KBr + 1.048 CuO + 7N_{2} \\ & + 3CO_{2} + 9H_{2}O \end{split} \tag{3} \\ & Mg(CDH)_{3}(NO_{3})_{2} + 1.212 Sr(NO_{3})_{2} + 7CuO \\ & \rightarrow MgO + 1.212 SrO + 0.943 CuO + 7N_{2} \\ & + 3CO_{2} + 9H_{2}O \end{split}$$

2.2 Apparatus and method

Differential thermal analysis and thermogravimetry were carried out using a Rigaku TAS-200 Thermal Analyzer. The sample container was an open alumina cell and the sample amount was five mg. The sample was heated to 800°C at a heating rate of 20°C/min. under air.

The analysis of the evolved gas was carried out by two methods. One was a method in which the sample was decomposed under isothermal conditions. The other one was the method in which the sample was burned in a tube. For the former, a glass tube (A) (16 mm, inside diameter) was fixed in a furnace kept at 400°C. 50 mg of the sample was weighed into a boat-shaped container and the container was inserted into the glass tube (A). The decompositon was carried out under flowing He gas at 20 ml/min. The evolved gases were collected in a collection bag (Tedlar bag, 350ml capacity). The amounts of the N₂, CO, CO₂ and N₂O gases evolved were quantified using a Shimadzu GC-4C Gas Chromatograph (hereafter, GC). Table 2 shows the

Kayaku Gakkaishi, Vol. 59, No. 6, 1998 -

Fig. 1 DTA and TG curves of the Mg complex and mixtures

measurement conditions for the GC. The NO and NO₂ gases were quantitatively analyzed using a Gastec gas detector tube. The NH₃ and N₂H₄ gases were quantified by the indophenol method⁹⁾ ($\lambda = 630$ nm)and the P-aminobenzaldehyde method¹⁰⁾ ($\lambda = 458$ nm), respectively. For the latter, 1g of the sample was loaded at a 0.6 packing fraction in a 6 mm I.D. aluminum burning tube. The sample was ignited in the burning container (18.3 mm, inside diameter; 93.2 mm, height). The evolved gas was quantitatively analyzed by the above-mentioned method.

The decomposition and combustion residue was analyzed by the X-ray diffraction using a Nippon Detam JDX-3500.

3. Results and discussion

3.1 Thermal analysis

Fig.1 shows the results of the thermal analysis for the Mg complex and the stoichiometric mixtures with various oxidizing agents according to eq. 1~4. The Mg complex gradually decomposed after melting at 220°C, and the final residue was MgO. For its decomposition behavior, such as the gas evolution behavior, the detailed description is omitted in this report, because it was reported already^{4~7}). In the binary system with various oxidizing agents, it was reported the decomposition vigorously progressed at low temperature only when using KBrO₃ as the oxidizing agent⁷).

In the binary system of the Mg complex of CDH/CuO, the exothermic decomposition occurred at a lower temperature(185°C) than the melting point for the complex only, and the decomposition reaction finished at 350°C. The final weight loss was 41%, which was inconsistent with the calculated value for the MgO and Cu of the residue(50.3%). This value was close to the calculated value for the MgO and CuO of the residue(38.8%). Most of the CuO remained unreacted, and CuO seem to contribute to the reaction not as an oxidizing agent but as a catalyst. As seen in Fig.6, the X-ray diffraction pattern of CuO was confirmed in the decomposition residue.

With the addition of CuO to the binary systems with various oxidizing agents, the initial temperature of decomposition became lower and the exothermic decomposition peak became sharp in comparison with the results for the binary system⁷⁾.

When using $Sr(NO_3)_2$ as the main oxidizing agent, unreacted $Sr(NO_3)_2$ remained and decomposed above 500°C (temperature of the decomposition, 570°C¹¹). However, the amount of unreacted $Sr(NO_3)_2$ in the Mg complex $/Sr(NO_3)_2/CuO$ was thought to be less than that in the binary system without CuO⁷), considering the size of the endothermic peak.

- 3.2 Analysis of the gas evolved
- 3. 2. 1 qualitative analysis of the gas evolved using TG-MS

As previously reported⁶⁾, the gas behavior in the Mg complex corresponded to the thermal behavior in the DTA curve, and mainly N_2 , NH_3 , N_2O , CO and CO₂ gases were evolved during the decomposition.

Fig.2 shows the amount of various fragment

Fig. 2 Amount of fragment ions of the evolved gas for the mixtures with KClO₄

ions versus temperature from the results of TG-MS analysis in the Mg complex/KClO₄ and the Mg complex/KClO₄/CuO.

The evolution of NH₃, H₂O, N₂, NO, N₂O, CO and CO₂ was supposed from the fragments (m/z) of 17, 18, 28, 30 and 44. In the case of the tertiary system(the dotted line in Fig.2), the evolution of N₂ seems to occur mainly over the temperature range of 200 to 300 °C, because the peak behavior of m/z=28 was inconsistent with that of m/z=44. However, after 300 °C, the evolution of CO and CO₂ was supposed to become the main reaction from the similar behavior for m/z=28 and 44. The amount of NO evolved seemed to be small because of the small peak for m/z=30. The peak for m/z=32 observed in both systems above 400 °C indicates the evolution of O₂ due to the decomposition of unreacted KClO₄.

Fig. 3 Amount of fragment ions in the gas evolved for the mixtures with $Sr(NO_3)_2$

Fig.3 shows the amount of various observed fragment ions versus temperature in the binary system and the tertiary system with CuO, when using $Sr(NO_3)_2$ as main oxidizing agent. In this case, CO_2 seemed to evolve over a wide temperature range of 220 to 550°C, as supposed from an similar behavior for m/z=28 and 44. Furthermore, the peak for m/z=32 and 30 observed in both systems at above 500°C indicates the evolution of O_2 and NO due to the decomposition of unreacted $Sr(NO_3)_2$.

In the tertiary system with KBrO₃ also, the gas behavior corresponded to that in the DTA curve; the gas evolution curve has a sharp peak. Fig.4 shows the mass spectrum at the temperature at which the maximum amount of the gas was evolved. It was known that the various gases

Kayaku Gakkaishi, Vol. 59, No. 6, 1998 -3.

observed over a wide temperature range in the other systems were evolved at the same time in this system.

3. 2. 2 Gas evolved upon igniting under isothermal conditions

Table 3 shows the analysis results of the gas evolved upon ignition at 400°C. In this table, the results for the Mg complex of CDH is also shown because hydrazine was not analyzed in the third report⁶⁾. In the mixture system with various oxidizing agents, the amount of N_2 evolved increased remarkably compared with the results for the Mg complex of CDH only. This might be caused by the increase in the effect of the oxidizing agent on the ignition, which was inconsistent with the tendency in the DTA curve under a moderate condition. Furthermore, the amount of NH₃ evolved changed little, while that of N_2H_4 decreased. A strong reductive N_2H_4 was thought to react with the oxidizing agent.

The effect of the oxidizing agent when using $KBrO_3$ was the largest of all systems, and most of the nitrogen atoms in the complex became N_2 gas without formation of NH_3 and N_2H_4 gases. 80% of the carbon atoms were oxidized to CO_2 gas. (the remainder of the product was CO gas.) The mass balance for these atoms was approximately good, about 100%, as shown in Table 3. $KBrO_3$ decomposed completely to KBr and O_2 ; KBr was confirmed by X-ray diffraction of the decomposition residue. Based on the residue and the gas behavior, $KBrO_3$ was supposed to react sufficiently with the Mg complex as the oxidizing agent.

The effect of the oxidizing agent decreased in the order of $KBrO_3$, $KClO_4$ and $Sr(NO_3)_2$ as the oxidizing agent. The mass balance of nitrogen

Gasas	Mixtures of Table 1			
Uases	MgCDH*	MgCDH/KClO ₄	MgCDH/KBrO ₃	$MgCDH/Sr(NO_3)_2$
N ₂	4.57	6.13	7.01	5.99
NH3	0.97	0.65	0.10	0.79
NH ₂ NH ₂	1.34	0.16	0.003	0.06
N₂O	0.50	0.00	0.00	0.00
NO	0.005	0.021	0.050	0.025
NO2	0.0014	0.00003	0.00003	0.00060
co	1.76	0.19	0.64	0.53
CO2	0.57	1.68	2.39	0.71
N number	13.79	13.23	14.13	12.92
%	98.5	94.5	100.9	76.9
C number	2.33	1.87	3.03	1.24
%	77.7	62.3	101.0	41.3

 Table 3 Amount of gas evolved for the Mg complex and two component mixtures with various oxidizing agents
 (unit: mol/mol)

 $^{*}MgCDH = Mg(CDH)_{3}(NO_{3})_{2}$

火桨学会誌

and carbon atom was low when $Sr(NO_3)_2$ was used. The low mass balance for the nitrogen atom was thought to be caused by including of the nitrogen atom in the $Sr(NO_3)_2$ oxidizing agent. Namely, in this case, part of the oxidizing agent remained unreacted, because the Xray diffraction pattern (Fig.5) of $Sr(NO_3)_2$ was confirmed in the decomposition residue. As for the mass balance of the carbon atom, the evolved carbon dioxide was fixed as $SrCO_3$, as seen in Fig.5. $SrCO_3$ was formed by the reaction of SrO with H₂O and CO₂ of the decomposition product, as previously reported⁷¹.

In the binary system with KClO₄, the gas behavior was close to the results in the mixture system with $Sr(NO_3)_2$. In this case also, unreacted KClO4 was confirmed in the decomposition residue. The results of X-ray diffraction of the residue were omitted. Consequently, KClO₄ did not seem to react sufficiently with the complex, as in the case of $Sr(NO_3)_2$. In the case of (1) (the binary system of the Mg complex with CuO), the amount of the N_2 evolved increased compared with that in the Mg complex only. The amount of NH₃ evolved increased more or less, and that was thought to be caused by the action of CuO as a catalyst of the decomposition, as mentioned in 3.1. Namely, the oxidation of NH₃ was thought to be insufficient. Fig.6 shows the X-ray diffraction of the decomposition residue in the Mg complex/CuO. The X-ray diffraction pattern of CuO was confirmed, though a part of the CuO was reduced to Cu₂O. The NH₃ evolu-

Casas	Mixtures of Table 1			
Gases	(1)	(2)	(3)	(4)
Nz	5.82	6.13	6.81	6.69
NH ₃	2.10	9.21×10 ⁻⁵	0.000462	8.54×10 ⁻⁵
NH₂NH₂	0.00	0.000482	0.000251	0.00037
N₂O	0.07	0.00	0.00	0.00
NO	0.023	0.020	0.0254	0.025
NO2	0.0006	2.82×10 ⁻⁵	3.91×10^{-5}	3.55×10 ⁻⁵
СО	0.99	1.10	0.81	1.09
CO2	1.90	1.68	2.01	1.24
N number	13.90	13.18	13.65	13.38
%	99.3	94. 1	97.5	81.5
C number	2.89	2.69	2.82	2.33
%	96.3	89.7	94.0	77.7

 Table 4 The effect of CuO on the amount of gas evolved (unit: mol/mol)

Fig. 6 XRD patterns of the residue for the Mg complex/CuO

tion decreased remarkably by the addition of another oxidizing agent with a decrease in N_2H_4 evolution.

In the tertiary system with CuO, the N₂ evolution increased except for the system with KBrO₃, though the evolved amount of it was insufficient based on the stoichiometric equation. In the system with KBrO₃, the amount of N₂ evolved and the mass balance of nitrogen atom become smaller with the addition of CuO. The reaction might be insufficient due to the scattering of the sample because of the vigorous reaction. On the other hand, in the case of $Sr(NO_3)_2$, the reactivity become greater with the addition of CuO; the amount of N₂ evolved increased by 5%. In addition, the relative intensity of the X-ray diffraction of $Sr(NO_3)_2$ become smaller with the addition of CuO, as seen in Fig.5.

3. 2. 3 Evolved gas during combustion

Table 5 shows the amounts of the gases evolved during combustion in the system using $Sr(NO_3)_2$. The gas behavior during the combustion only in this system was investigated; the mass balance of nitrogen was low during the ignition at 400°C. In the case of the combustion, the mass balance of nitrogen increased about 4% in both systems. When using $Sr(NO_3)_2$ as the oxidizing agent, the investigation of the change in the combustion form and the use of a combustion catalyst is neccesary, considering the mass balance of nitrogen. The use of $Sr(NO_3)$, is advantageous from the view point of a non-halogen agent and a reaction product having a higher melting point (the oxide, the carbonate), and its practical use will be investigated subsequently.

4. Conclusions

The thermal behavior and the gas evolution behavior was investigated in the Mg complex

Cases	Mixtures of Table 1		
Gases	MgCDH/Sr(NO ₃) ₂	MgCDH/Sr(NO ₃) ₂ /CuO	
N ₂	6.82	7.02	
NH ₃	0.00027	0.0019	
NH ₂ NH ₂	4.02×10 ⁻⁵	2.64×10 ⁻⁵	
N ₂ O	0.016	0.013	
NO	0.00030	0.00038	
NO2	0.00040	0.00077	
co	0.38	0.41	
CO2	0.96	1.08	
N number	13.67	14.07	
%	81.4	85.7	
C number	1.34	1.49	
%	44.7	49.7	

 Table 5 Amount of gas evolved for combustion of the Mg complex-Sr(NO₃)₂ mixtures
 (unit: mol/mol)

 $MgCDH = Mg(CDH)_3(NO_3)_2$

with various oxidizing agents or in a tertiary system with 10% added CuO as another oxidizing agent. The oxidizing agents were pottasium perclorate, pottassium bromate and strontium nitrate.

For the Mg complex / $KBrO_3$ mixture system, the initial temperature of the reaction was the lowest with the most vigorous reaction, and the amount of nitrogen and carbon dioxide gases were the largest of all systems. When using $Sr(NO_3)_2$ as the oxidizing agent, the amount of the N₂ gas evolved was the lowest. However, the reactivity was thought to be improved by the change in the combustion form and the addition of a combustion catalyst. NH₃ and N₂H₄ gases were generated in all binary systems with various oxidizing agents, and the amounts of these gases decreased remarkably with the addition of CuO.

Refference

 Jian Zhou WU, H. Yuzawa, T. Matsuzawa, M. Arai and M. Tamura, J. Japan Explosives Soc., 55, 66 (1994)

- K. Ichikawa, M. Arai, M. Tamura and K. Waki, An academic meeting of Japan Explosives Soc., 1997 (autumn), p87
- T. Kazumi, Y. Suzuki, T. Okada, T. Hasegawa and T. Yoshida, J. Japan Explosives Soc., 56, 248(1995)
- M. Akiyoshi, N. Hirata, H. nakamura and Y. Hara, J. Japan Explosives Soc., 57, 238(1996)
- 5) M. Akiyoshi, N. Hirata, H. Nakamura, and Y. Hara, ibid., 57, 66 (1996)
- 6) M. Akiyoshi, Y. Imanishi, N. Hirata, H. Nakamura and Y. Hara, ibid., 58, 68(1997)
- 7) M. Akiyoshi, G. Kinoshita, N. Hirata, H. Nakamura and Y. Hara, ibid., 58, 258(1997)
- M. Akiyoshi, G. Kinoshita, N. Hirata, H. Nakamura and Y. Hara, ibid., submitted for publication
- 9) JIS K 0099
- "Analytical Chemical Handbook", Maruzen (1981), P650
- "Chemical Handbook-fundamental part", vol. 1, p I-191 (1984)

カルボノヒドラジド金属錯体硝酸塩の熱挙動(第6報) ーマグネシウム錯体と酸化剤混合系のガス発生挙動---

自動車用エアバッグのガス発生剤として、カルボノヒドラジドのマグネシウム錯体を取り 上げ、その性能を評価する目的で、第4報では酸化剤との混合物の熱分析、燃焼熱、燃焼温 度や燃焼速度を測定して考察した。本報告では、マグネシウム錯体と過塩素酸カリウム、臭 素酸カリウムおよび硝酸ストロンチウムの酸化剤に一部酸化銅を加えた系のガス発生挙動を 比較検討した。

マグネシウム錯体は臭素酸カリウムと混合するとき最も低温で、しかも激しく反応し、窒 素および二酸化炭素の発生量が最も大きくなった。硝酸ストロンチウムを用いた系では、窒 素の発生量は最も少なかったが、酸化銅を添加することによって、その発生量は増大した。 いずれの系においても、酸化剤との2成分系ではアンモニウアやヒドラジンを発生するが、 酸化銅を加えることによってこれらの発生量は著しく小さくなった。

(*九州工業大学応用化学教室 〒805-8550 北九州市戸畑区仙水町1-1

**ダイセル化学工業(株)技術開発センター 〒671-1665 兵庫県損保郡損保川馬 場805)

Kayaku Gakkaishi, Vol. 59, No. 6, 1998 -327-