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Abstract

In numerical simulations of shock initiation process of condensed explosive, state variables in reaction zone are regarded as
simple mixture phase of the unreacted and the reacted components. The relations of the specific volumes of the unreacted
and the reacted component were investigated under the four types of assumptions. From the numerical results, it was indicat-
ed that the specific volume of the unreacted component can be described by the specific volume of the reacted component
under the certain assumptions. This relation can be applied as the simpslified pressure calculations of the reacting explosive.
The reason why there is such relation is that the unreacted and the reacted components approximately pass two types of
single lines in pressure and specific volume plane, respectively. It has been found that the compression processes of reacted
component in reaction zone have the path close to Hugoniot line for reacted component under isentropic solid assumption.
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1. Introduction

In numerical simulation of initiation process on high
explosive it is necessary to determine the pressure of inter-
mediate phase. Due to lack of the knowledge of the inter-
mediate composition during the reaction process, a simple
mixture theory has been often used to determine the
pressure V. In this theory, intermediate states is regarded
as simple mixture phase of the unreacted and the reacted
phases and is calculated by using individual equations of
state for both components and the reaction rate of the deto-
nation products. Therefore, in the numerical simulation,
important factors are the equations of state for the unre-
acted and the reacted components, the reaction rate model
and the pressure calculation during reaction process. There
have been much studies on the individual equations of
state and the reaction rate law of high explosive, in con-
trast there are few studies relating the calculation method
for intermediate component.

We have found that the relation between the specific
volumes of unreacted and reacted components show very
little dependence on the decomposition degree under a
certain assumption ?. Utilizing this relation we have pro-

posed a new method on the pressure calculation of react-
ing explosive. In this study four types of the assumptions
that are the fourth assumption for the pressure calculation
of mixture phase are employed to discuss the intermediate
phase. The relations between the unreacted and the reacted
state variables extracted from the numerical simulations of
shock initiation problems are investigated.

2. Mixture rule of reacting explosive

In order to calculate the pressure of the intermediate
phase P(V, E), we have to obtain the solutions of the four
unknown variables, specific volumes (Vi, V») and internal
energies (E), E») for unreacted and reacted components.
Subscript 1 and 2 indicate the unreacted and reacted com-
ponents, respectively. The internal energy and specific
volume of the intermediate components have been repre-
sented by a linear combination of individual internal ener-
gies and specific volumes,

(I=A)W, + AV, =V =0 (1)

(I-2)E, +AE, -E=0 )
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where A is the reaction rate; A = 0 is un-reacted state and
A =1 completely reacted state. The condition of mechani-
cal equilibrium P = P, (Vi, E\) = P> (V», E») is usually used
to obtain these solutions. Since we have above three condi-
tions, another physical assumption is needed to obtain the
four solutions.

There are many assumptions as fourth condition. Many
researchers have adopted the thermal equilibrium condi-
tion,

T=T, (Vi, E\) =T, (Vy, Ey), (3)

as the remaining assumption.

The pressure-volume relation along the isentropic line for
unreacted component can be obtained by solving follow-
ing linear first-order ordinary differential equation under
the assumption of I'/ V| = const. = a.

dP,. a
d;; +aP1s :PIII(]_E(VO_VI)J 4)

The assumption of the isentropic solid can be described
as follow.

E =E= (Pl\ _RII)+R—H(V0 _Vl) 5)
ap, 2
where the subscripts S and H indicate the isentrope and
Hugoniot line, respectively. In this case the E is calculated
by equation (2) after the E; is calculated by equation (5).
Because the Hugoniot and isentropic lines of unreacted
components are close each other on pressure vs. volume
(P - V) plane, Hugoniot line may be able to be used like
isentropic line for modeling the behavior of unreacted
component of reacting explosive. The fourth assumption
becomes as follow.

P
E=E, :%(Vo _Vl) (6)
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In the previous paper ? we had used the next relation as
fourth assumption.

St )
EZ EZS

We found that the relationship of specific volumes
between the unreacted and reacted components can
be approximately expressed with one curve regardless
decomposition degree of high explosive under the above
assumption. The relation of those specific volumes was fit-
ted as Vi =f(V,) by non-linear curve fitting method .

In this report, for the above mentioned four types of
fourth assumptions, 7y = 1>, E\ = Eis, E: = Eiyand E, / E»
= En /| E», were employed in the numerical simulation
of shock initiation process, and the state quantities were
extracted to investigate the relations of V, and V, compo-
nents.

3. Numerical simulation and extraction of
state quantities in reaction zone
3.1 Numerical procedure

The one-dimensional Lagrangian code was used for solv-

ing the shock initiation phenomena. The governing equa-
tions are mass, momentum and energy conservation law
and are solved by finite difference method *.
Reaction rate model is necessary to estimate the degree
of the decomposition of explosive. Ignition and growth
model is one of the most useful models. In this study,
original ignition and growth model »-7 was used.

In addition, the equations of state for unreacted and
reacted phases are required to carry out the numerical
simulation. For both phases, JWL equation of state 19 is
employed. The JWL parameters of PETN(1.75 g - cm™)
were taken as the same values as reference (5). In order to
examine the assumption of temperature equilibrium, we
also used temperature dependent form JWL equation of
state 1D,
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Fig. 1 Numerical results of shock to detonation transition (SDT) process in PETN.
The position is counted from the initial interface between the PMMA and PETN.
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Fig. 2 Relation of the specific volumes of the unreacted and the reacted component in reaction zone of PETN, the state
quantities are extracted from the numerical simulation of shock initiation process, impact problems PMMA vs.
PETN. Up; impact velocity, Op; Distance from interface of PMMA and PETN to the observation point.

wCv T )

P=Adexp(—R,{)+ Bexp(—R,{) +

where { is V / Vi, subscript O indicate initial state of con-
densed explosive. A, B, R, R, and w are the constants, Cv
is the average heat capacity. From thermodynamic relation,

oP

dE=Cvdl + {T[—j - PJdV OF
or ),

T (E, V) function can be obtained.

3.2 One dimensional impact problems of PMMA
vs. PETN

In order to extract the state quantities in reacting explo-
sive, the one-dimensional impact problems of PMMA
vs. PETN were carried out using each fourth assumption.
Figure 1 shows the shock to detonation transition (SDT)
process in PETN with the pressure distributions of three
different times. It can be seen that those simulation results
are insensitive to the fourth assumption. The aim of this
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Fig. 3 Conceptual diagram for explanation of the relation
of Vi and V.
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study is to investigate the relation of the specific volumes
of unreacted and reacted components. Therefore we will
not consider the reason why the numerical results of shock
initiation are insensitive to the assumption adopted. In
this paper we take notice of the state quantities in reacting
explosive, especially the relation of the specific volumes of
each component.

4. Discussion

The relations of specific volumes of V, and V, obtained
under each fourth assumption are shown in Figs. 2 (a)-(c)
in V, - V, plane. Under the assumptions of 7, = 7> and E;
= Eiy, relation of V; and V, does not pass along the single
line in V; - V;, plane. While in the cases of the assumptions,
Ei =Eisand E, / E; = Ein / Eys, the both specific volumes
approximately exist on the single line in V; - V, plane. We
have proposed a new method for pressure calculation in
reacting explosive under the E, / E, = Ey / E»s assumption 2.
Because the relation of V; and V, can be fitted by the
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simple function, the V; and V, can be solved using such
function and equation (1). At the same time Ey4 (V)) and
E»s (V) are obtained to solve the solutions of E; and E.
Finally, the pressure in reaction zone is solved without
complex iteration which includes the complex form equa-
tions of state. In this paper we will try to answer the ques-
tion why the relation of V, and V, could be approximately
described by the single line in V, - V; plane.

For explanation we introduce the following assumption.
Both components pass along the single line P - V plane,
such as Hugoniot, Isentrope. Although the assumption is
not acceptable thermodynamically, for simple consider-
ation we consider following situation. The unreacted com-
ponent follows on Hugoniot line and reacted component
changes along the isentrope which pass through the C-J
point. Figure 3 is the conceptual diagram for explanation
of the relation of V, and V,. The certain state of mixed
phase, dotted lines, exists between two lines. Mechanical
equilibrium, P; = P, determine the unique combination
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Fig. 4 Loci of the unreacted and the reacted components on P-V plane during shock initiation process, the state quantities
are extracted from the numerical simulation of shock initiation process, impact problems PMMA vs. PETN.
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Fig. 5 Loci of the reacted component on P-V plane
during the shock initiation process with the
Hugoniot line for reacted component.

of the V; and V, which is independent on reaction pass.
Because two lines are monotonic and single-valued func-
tion, the relation of the V, and V, can be expressed a con-
tinuous single-valued function in V; - V, plane.

Loci of the unreacted and reacted components on P - V
plane during shock initiation process which was extract-
ed one dimensional impact problems of PMMA vs.
PETN are shown in Fig. 4. In those figure Hugoniot line
for unreacted component and isentrope line for reacted
component are drawn as reference line. In the case of
1.2 km s! impact velocity, the reacted component has
the similar path which is very close to the isentrope line
except for E, = Ein case. The unreacted component also
has similar path which is close to the isentrope solid
or Hugoniot line. When the decomposition proceeds
with high reaction rate as 1.2 km s impact velocity, the
Hugoniot for unreacted and isentrope for reacted compo-
nents probably be able to approximately be used the pres-
sure calculation of the reacting explosive without equation
(2). In the cases of 0.6 km s’! impact velocity, the reacted
phases for all cases are deviating from its isentrope line
which passes through the C-J point so that above assump-
tion of Hugoniot and isentrope can not be used. Under
the E, = E\s, isentropic solid assumption, the unreacted
component is fixed on the isentrope line, and from Fig. 4
(b) the reacted phase approximately pass a single line in
P - V plane. This is an answer of the question why both
specific volumes could be approximately described by sin-
gle line in V - V; plane. In this case our proposed method
for pressure calculation of reacting explosive can be applied.

The single line exist above the isentrope line which pass
through C-J point, and the upper limit of this type of shock
initiation problems is the Hugoniot line for the reacted
component. The pass for the reacted component obtained
by isentropic solid assumption is compared with Hugoniot
for the reacted component in Fig. 5. It has been found that
the compression processes of reacted component of react-
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Fig. 6 Comparison of the results of isentropic solid
assumption and Hugoniot for the reacted
component. The position is counted from the
initial interface between the PMMA and PETN.

ing explosive have the path very close to Hugoniot line for
reacted component under isentropic solid assumption. The
assumption of isentropic solid and Hugoniot for reacted
component was employed the pressure calculation without
equation (2) in the numerical simulations. Figure 6 shows
the comparison of the results from the assumption of isen-
tropic solid, and isentoropic solid and Hugoniot for reacted
component. Figure 7 is the x-t diagram on shock propaga-
tion process in PETN. The inflection points of those lines
indicate the SDT point. The difference of those points is
about 0.25 mm and is small comparison with the experi-
mental error. Hugoniot for unreacted component and isen-
tropic solid can reasonably be used the shock to detonation
process.
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Fig.7 The x-t diagram on shock propagation process
in PETN.

5. Conclusion

The state quantities for the unreacted and the reacted
components were extracted during the numerical simula-
tions of the shock initiation process under four types of
assumptions to investigate its relations. The conclusions
are as follows. The specific volumes for the unreacted
component can be approximately described by the func-
tion of the specific volumes for reacted component without
the internal energy and reaction rate in the cases of the

assumptions of isentropic solid and E, / E, = E\y / Exs.

When the specific volumes of both components pass two
types of single line in P-V plane, respectively, the above
relation of the specific volumes is formed. Under the
assumption of isentropic solid the reacted component has
close path to the Hugoniot for reacted component.
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