Two - dimensional computations of the propapting detonations in a stoichiometric hydrogen - oxygen diluted with nitrogen or argon mixture (2H2 + O2 + 3.76N2 / 3.76Ar) were performed using a detailed chemical reaction mechanism. The transverse wave strength was defined as the dimensionless pressure increase across the renect shock and was deternined for the different channel widths at initial pressures 1.000, 0.421, and 0.132 atm. The shock structure of the detonation propagating through a narrow chanel evolved just from a single Mach structure to a double Mach structure. Unreacted pockets were cut off by the transverse wave collisions, but they immediately burned. When a detonation propagated through a wide channel, the shock strucure evolved continuously from a single Mach structure to a complex Mach structure, except for the hydrogev - oxygen mixture diluted with argon at 0.132 atm. The channel width, Wmax, was the widest one in which a single transverse wave appeared, and showed good agreement with the cell width of the previous experimental cell widths. In the hydropn - air mixture at initial pressure 1.000 and 0.421 atm, the transverse wave strength increased up to 1.50 with increasing the channel width, and the strong transverse detonation occurred. There was a close relation between the second explosion limit and the occurrence of the strong transverse detonation observed in hydrogen - air mixture at 1.000 and 0.421 atm. Since the frontal shock oscillated, the post - shock condition varied across the second explosion limit. Steep increasing of the induction length might cause the onset of the strong transverse detonation. We suggested that the irregularity of the H2+Air detonation was connected with the occurrence of the strong transverse detonations.
窒素およびアルゴン希釈の酸水素デトネーション(2H2 + 02 + 3.76 N2 / Ar)の二次元伝播挙動を素反応モデルを用い数値的に再現した。初期圧力1.000, 0.421, 0.132 atmの混合気に関してデトネーションの伝播に重要な役割を果たす横波を評価するため, 反射衝撃波前後の圧力比で定義した横波強さとチャンネル幅との関係を調べた。 横波が一個観察されるチャンネル内では, チャンネル幅が狭いと横波強さは小さく, 流れ場で観察される衝撃波構造は, 単一および二重マッハ軸構造が観察された。チャンネル幅の増加に伴い横波強さは増加し, 衝撃波構造もアルゴン希釈混合気の初期圧力0.132 atmを除き単一, 二重マッハ軸構造から, 複雑マッハ軸構造へと発展した。 チャンネル内に横波が一個発生する最大のチャンネル幅において実験結果とよく一致するセル幅が得られた。 この最大チャンネル幅で初期圧力1.000と0.421 atmの窒素希釈混合気では, 強いTransverse Detonationが観察された。その発生要因としては, 衝撃波背後の気体条件が第二燃焼限界線の低温・高圧側に移行し, 入射衝撃波後方の反応誘起距離が増加することが挙げられた。 また, 強いTransverse Detonationの発生と, 窒素希釈混合気特有のセル構造の不規則性との関連が示唆された。